Reduction of caspase-8 and -9 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after neonatal hypoxic/ischemic injury in mice overexpressing Hsp70.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Caspase-8 and caspase-9 are essential proteases of the extrinsic and intrinsic apoptotic pathways, respectively. We investigated whether neuroprotection associated with overexpression of heat-shock protein 70 (Hsp70), a natural cellular antiapoptotic protein, is mediated by caspase-8 and caspase-9 signaling in the neonatal mouse brain after hypoxia/ischemia (H/I) injury. METHODS Postnatal day 7 transgenic mice overexpressing rat Hsp70 (Hsp70 Tg) and their wild-type (Wt) littermates underwent unilateral common carotid artery ligation followed by 30 minutes of exposure to 8% O2. The expression of apoptotic proteins was quantified by Western blot analysis, and the specific interaction between Hsp70 and apoptotic protease activating factor 1 (Apaf-1) was determined by coimmunoprecipitation. RESULTS Hsp70 overexpression reduced cytosolic translocation of cytochrome c without affecting the levels of Apaf-1 and pro-caspase-9 24 hours after H/I. The expression of these apoptotic proteins in the naïve neonatal brains was also not affected by Hsp70 overexpression. Reduced caspase-9 cleavage occurred in Hsp70 Tg mice compared with Wt littermates 24 hours after H/I and correlated with increased binding of Hsp70 and Apaf-1. Increased cellular Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (FLIP) expression and decreased caspase-8 cleavage were also observed in Hsp70 Tg compared with Wt mice 24 hours after H/I. CONCLUSIONS Our results suggest that the extrinsic and intrinsic apoptotic pathways mediate the neuroprotective effects of Hsp70 overexpression in neonatal H/I, specifically by upregulating FLIP and sequestering Apaf-1, leading to reduced cleavage of caspase-8 and caspase-9.
منابع مشابه
Neuroprotection against hypoxic-ischemic brain injury by inhibiting the apoptotic protease activating factor-1 pathway.
BACKGROUND AND PURPOSE Emerging evidence suggests that mitochondrial damage-mediated neuronal apoptosis is a major contributor to neonatal hypoxic-ischemic (H-I) brain injury. This study was performed to determine whether targeted inhibition of the apoptotic protease activating factor-1 (Apaf-1) signaling pathway downstream of mitochondrial damage confers neuroprotection in rodent models of neo...
متن کاملStem Cell Therapy in Hypoxic Ischemic Encephalopathy
Introduction there are one million deaths from asphyxia in newborn annually. Management of this newborn is only supportive. Autologuse stem cell therapy may reduce mortality and long term morbidity. Outcome of asphyxiated newborn is related to damage CNS cells. Stem cells prevent Apoptosis and induce repairmen of injured neurons. Methods in a review study all article related to three keyword...
متن کاملInduced inhibition of ischemic/hypoxic injury by APIP, a novel Apaf-1-interacting protein.
We describe the isolation and characterization of a new apaf-1-interacting protein (APIP) as a negative regulator of ischemic injury. APIP is highly expressed in skeletal muscle and heart and binds to the CARD of Apaf-1 in competition with caspase-9. Exogenous APIP inhibits cytochrome c-induced activation of caspase-3 and caspase-9, and suppresses cell death triggered by mitochondrial apoptotic...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملDelayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis.
Brain injury in newborns can cause deficits in motor and sensory function. In most models of neonatal brain injury, thalamic damage often occurs. Using the Rice-Vannucci model of neonatal hypoxic-ischemic brain injury, we have shown that neuronal degeneration in somatosensory thalamus is delayed in onset ( approximately 24 hr) compared with cortical and striatal injury and exhibits prominent st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 37 2 شماره
صفحات -
تاریخ انتشار 2006